Chem Academy India’s best coaching institute for IIT JAM and CSIR UGC Net with 6000+ Selection. Are you preparing for CSIR NET 2019 and willing to crack this exam with a really good score? If yes! Then you would like to prepare excellently and become skilled to be a locality of this ambitious journey.

Now, it’s high time when you need to put your complete focus in planning the smart preparation strategies for CSIR NET and executing them.

In order to invest your efforts in the right direction and make wise use of them, you should know exactly which topics you have to cover from the CSIR NET Chemical Science Syllabus and which topics you should set on high priority?

Below in this Page, you can get the complete information about the CSIR UGC NET Syllabus for Joint UGC NET/JRF Exam June 2019 which is presented in a very well-structured format. 

CSIR NET Chemical Science is divided into 4 Category By Expert, You can easily to get complete CSIR NET Chemical Sciences Syllabus Below.


  1. Chemical periodicity
  2. Structure and bonding in homo- and hetero nuclear molecules, including shapes of molecules (VSEPR Theory).
  3. Concepts of acids and bases, Hard-Soft, acid base concept, Non-aqueous, solvents.
  4. Main group elements and their compounds: Allotropy, synthesis, structure and bonding, industrial importance of the compounds.
  5. Transition elements and coordination compounds: structure, bonding theories, spectral and magnetic properties, reaction mechanisms.
  6. Inner transition elements: spectral and magnetic properties, Redox chemistry, analytical applications.
  7. Organ metallic compounds: synthesis, bonding and structure, and reactivity. Organ metallic’s in homogeneous catalysis.
  8. Cages and metal clusters.
  9. Analytical chemistry- separation, spectroscopic, electro- and thermo analytical methods.
  10. Bioinorganic chemistry: photosystems, porphyrins, metalloenzymes, oxygen transport, electron- transfer reactions; nitrogen fixation, metal complexes in medicine.
  11. Characterization of inorganic compounds by IR, Raman, NMR, EPR, Mossbauer, UV-vis, NQR, MS, electron spectroscopy and microscopic techniques.
  12. Nuclear chemistry: nuclear reactions, fission and fusion, radio-analytical techniques and activation analysis.


  1. Basic principles of quantum mechanics: Postulates; operator algebra; exactly-solvable systems: particle-in-a-box, harmonic oscillator and the hydrogen atom, including shapes of atomic orbital’s; orbital and spin angular moment; tunneling.
  2. Approximate methods of quantum mechanics: Variational principle; perturbation theory up to second order in energy; applications.
  3. Atomic structure and spectroscopy; term symbols; many-electron systems and anti-symmetry principle.
  4. Chemical bonding in diatomics; elementary concepts of MO and VB theories;
  5. Huckel theory for conjugated π-electron systems.
  6. Chemical applications of group theory; symmetry elements; point groups; character tables; selection rules.
  7. Molecular spectroscopy: Rotational and vibrational spectra of diatomic molecules; electronic spectra; IR and Raman activities – selection rules; basic principles of magnetic resonance.
  8. Chemical thermodynamics: Laws, state and path functions and their applications; thermodynamic description of various types of processes; Maxwell’s relations; spontaneity and equilibrium; temperature and pressure dependence of thermodynamic quantities; Le Chatelier principle; elementary description of phase transitions; phase equilibrium and phase rule; thermodynamics of ideal and non-ideal gases, and solutions.
  9. Statistical thermodynamics: Boltzmann distribution; kinetic theory of gases; partition functions and their relation to thermodynamic quantities – calculations for model systems.
  10. Electrochemistry: Nernst equation, redox systems, electrochemical cells; Debye- Huckel theory; electrolytic conductance – Kohlrausch’s law and its applications; ionic equilibria; conductometric and potentiometric titrations.
  11. Chemical kinetics: Empirical rate laws and temperature dependence; complex reactions; steady state approximation; determination of reaction mechanisms; collision and transition state theories of rate constants; unimolecular reactions; enzyme kinetics; salt effects; homogeneous catalysis; photochemical reactions.
  12. Colloids and surfaces: Stability and properties of colloids; isotherms and surface area; heterogeneous catalysis.


  1. IUPAC nomenclature of organic molecules including regio- and stereoisomers.
  2. Principles of stereochemistry: Configurational and conformational isomerism in acyclic and cyclic compounds; stereogenicity, stereoselectivity, enantioselectivity, diastereoselectivity and asymmetric induction.
  3. Aromaticity: Benzenoid and non-benzenoid compounds – generation and reactions.
  4. Organic reactive intermediates: Generation, stability and reactivity of carbocations, carbanions, free radicals, carbenes, benzynes and nitrenes.
  5. Organic reaction mechanisms involving addition, elimination and substitution reactions with electrophilic, nucleophilic or radical species. Determination of reaction pathways.
  6. Common named reactions and rearrangements – applications in organic synthesis.
  7. Organic transformations and reagents: Functional group interconversion including oxidations and reductions; common catalysts and reagents (organic, inorganic, organometallic and enzymatic). Chemo, regio and stereoselective transformations.
  8. Concepts in organic synthesis: Retrosynthesis, disconnection, synthons, linear and convergent synthesis, umpolung of reactivity and protecting groups.
  9. Asymmetric synthesis: Chiral auxiliaries, methods of asymmetric induction – substrate, reagent and catalyst controlled reactions; determination of enantiomeric and diastereomeric excess; enantio-discrimination. Resolution – optical and kinetic.
  10. Pericyclic reactions – electro-cyclisation, cycloaddition, sigmatropic rearrangements and other related concerted reactions. Principles and applications of photochemical reactions in organic chemistry.
  11. Synthesis and reactivity of common heterocyclic compounds containing one or two heteroatom’s (O, N, S).
  12. Chemistry of natural products: Carbohydrates, proteins and peptides, fatty acids, nucleic acids, terpenes, steroids and alkaloids. Biogenesis of terpenoids and alkaloids.
  13. Structure determination of organic compounds by IR, UV-Vis, 1H &13C NMR and Mass spectroscopic techniques.


  1. Chemistry in nanoscience and technology.
  2. Catalysis and green chemistry.
  3. Medicinal chemistry.
  4. Supramolecular chemistry.
  5. Environmental chemistry.

Leave a Reply

Your email address will not be published. Required fields are marked *