GATE MATHEMATICS 2013
Previous Year Question Paper with Solution.

1.    The possible set of eigen values of a 4 × 4 skew-symmetric dorthogonal real matrix is

    (a)

    (b)

    (c)

    (d)

Ans.    (a)

Sol.    We know that the eigen values of skew symmetric matrix are either imaginary number of zero and that of orthogonal matrix are unit modulus real or imaginary number shown below.

    So, the eigen values of 4 × 4 skew symmetric orthogonal matix are (± i).

2.    The coefficient of (z – )2 in the Taylor series expansion of

        f(z) =    

    around is

    (a)

    (b)

    (c)

    (d)

Ans.    (c)

Sol.    Taylor's expression for f(z) around z = r is

    

    

    

    

    

    

3.    Consider R2 with the usual topology.

    Which of the following statements are true for all A, B R2?

    

    (a) P and R

    (b) P and S

    (c) Q and R

    (d) Q and S

Ans.    (b)

Sol.    

        

    

    Hence, Statement S is true.

    

    Again, and implies that and and consequently.

    

    Thus, is a closed set (being union of two closed sets) containing A B. Since, is the smallest closed set containing, then

    

    From Eqs. (i) and (ii), we have

        

4.    Let f : R R be a continuous function with f(1) = 5 and f(3) = 11. If g(x) = then is equal to

    (a) 0

    (b) 6

    (c) 8

    (d) 14

Ans.    (b)

Sol.    Consider the function f : R R is given by

        f(x) =    3x + 2,

    Then, f is continuous and

        f(1) =    3 × 1 + 2 = 5

        f(3) =    3 × 3 + 2 = 11

    

    

    

5.    Let P be a 2 × 2 complex matrix such that tr(P) = 1 and det(P) = – 6. Then, tr(p4 – p3) is equal to

    (a) 75

    (b) 78

    (c) 80

    (d) 85

Ans.    (b)

Sol.    Consider the matrix,

        

    Then,    |P| = –6 and tr(P) = 1

    

    

    

    

        tr(P4 – P3) = 36 + 42 = 78.

6.    Suppose that R is a unique factorisation domain and that a, b R are distinct irreducible elements. Which of the following statements is true?

    (a) The ideal (1 + a) is a prime ideal

    (b) The ideal (a + b) is a prime ideal

    (c) The ideal (1 + ab) is a prime ideal

    (d) The ideal (a) is not necessarily a maximal ideal

Ans.    (d)

Sol.    Consider unique factorisation domain Z[x] and x Z[x]. The ideal < x > is a prime ideal in Z[x] but not a maximal ideal in Z[x]. To verify this, we begin with the observation that

        <x> =    {f(x) Z[x]/f(0) = 0}

    Thus, if g(x) h(x) <x>, then g(0) h(0) = 0 and since g(0) and h(0) are integers, we have g(0) = 0 or h(0) = 0.

    Hence, <x> is prime ideal in Z[x].

    But <x> < x, 2 > Z[x].

    Hence, <x> need not be maximal ideal in Z[x].

7.    Let X be a compact Hausdorff topological space and Y be a topological space. Let f : X Y be a bijective continuous maping. Which of the following statements is true?

    (a) f is closed map but not necessarily an open map

    (b) f is an open map but not necessarily a closed map

    (c) f is both an open map and a closed map

    (d) f need not be an open map or a closed map

Ans.    (d)

Sol.    Let X be a compact Hansderff topological space and left Y be a topological space. Left f : X Y be a bijective continuous mapping. Then, f need not be an open map or a closed map.

8.    Consider the linear programming problem Maximise subject to constraints 2x + 3y 16,

        x + 4y     18 and x 0, y 0

    If S denotes the set of all solutions of the above problem, then

    (a) S is empty

    (b) S is a singleton

    (c) S is a line segment

    (d) S has positive area

Ans.    (c)

Sol.    Given linear programming problem maximise

        z =    x +

    Subject to constraints

        2x + 3y     16

        x + 4y     18

        x 0, y     0

    whose graph is as follows

    Hence, shaded region is feasible region.

    The point of intersection of line 2x + 3y = 16 and x + 4y = 18 is B = (2, 4).

    

    

    Therefore, the set S of all solutions is line BC, which is a line segment.

9.    Which of the following groups has a proper subgroup that is not cyclic?

    (a) Z15 × Z77

    (b) S3

    (c) (Z, +)

    (d) (Q, +)

Ans.    (d)

Sol.    (Q, +) has no proper cyclic subgroup.

10.    The value of the integral is

    (a) 3

    (b) 2

    (c) 1

    (d) 4

Ans.    (b)

Sol.    

    Changing the order of integration, we get

    

    

    = (–2)(0 – 1) = 2.

11.    Suppose the random variable U has uniform distribution on (0, 1) and X = –2 log U. The density of X is

    (a)

    (b)

    (c)

    (d)

Ans.    (c)

Sol.

12.    Let f be an entire function on C such that |f(z)| 100 kg |z| for each z with |z| 2. If f(i) = 2i, then f(1) must be

    (a) 2

    (b) 2i

    (c) i

    (d) Cannot be determined

Ans.    (b)

Sol.

13.    The number of group homomorphisms from Z3 to Z9 is

    (a) 4

    (b) 5

    (c) 3

    (d) 6

Ans.    (c)

Sol.    The number of group homomorphisms from Z3 to Z9 is equal to GCD (3, 9) = 3.

14.    Let u(x, t) be the solution to the wave equation (x, t), u(x, 0) = cos and (x, 0) = 0. Then, the value of u(1, 1) is

    (a) 1

    (b) 2

    (c) 3

    (d) 4

Ans.    (a)

Sol.    Given wave equation is

    

    

            g(x) = 0, c = 1

    

    

    

15.    Let f(x) = Then,

    (a)

    (b)

    (c)

    (d) does not exist

Ans.    (a)

Sol.    

    

    

    

16.    Suppose X is a random variable with p(X = k) = (1 – p)k p for k {0, 1, 2, ...} and some p (0, 1). For the hypothesis testing problem

        H0 : p =    

    Consider the test "Reject H0, if X A or if X B", where A < B are given positive integers. The type I error of this test is

    (a) 1 + 2–B – 2–A

    (b) 1 – 2–B + 2–A

    (c) 1 + 2–B – 2–A–1

    (d) 1 – 2–B + 2–A–1

Ans.    (a)

Sol.

17.    Let G be a group of order 231. The number of elements of order 11 in G is

    (a) 11

    (b) 12

    (c) 10

    (d) 13

Ans.    (c)

Sol.    We have, 0(G) = 231 = 3 × 7 × 11.

    So, number of elements of order 11 in G = = 110.

18.    Let f : R2 R2 be defined by f(x, y) = (ex + y, ex – y). The area of the image of the region {(x, y) R2 : 0 < x, y < 1} under the mapping f is

    (a) 1

    (b) e – 1

    (c) e2

    (d)

Ans.    (d)

Sol.    Let f : R2 R2 be defined by

        f(x, y)    = (ex + y, ex – y)

    The region {(x, y) R2 : 0 < x, y < 1} is as follows

    Now,    f(0, 0) =    (e0 + 0, e0 – 0) = (1, 1)

        f(1, 0) =    (e1 + 0, e1 – 0) = (e, e)

        f(1, 1) =    (e1 + 1, e1 – 1) = (e2, 1)

        f(0, 1) =    (e0 + 1, e0 – 1) =

19.    Which of the following is a field?

    (a) C(x)/(x2 + 2)

    (b) Z(x)/(x2 + 2)

    (c) Q(x)/(x2 – 2)

    (d) R(x)/(x2 – 2)

Ans.    (c)

Sol.    Since, ideal <x2 – 2> is maximal ideal in Q[x].

    Hence, if field.

20.    Let x0 = 0. Define xn + 1 = cos xn for every n 0. Then,

    (a) {xn} is increasing and convergent

    (b) {xn} is decreasing and convergent

    (c) {xn} is convergent and x2n < xm < x2n + 1 for every n belongs to N

    (d) {xn} is not convergent

Ans.    (c)

Sol.

21.    Let C be the contour |z| = 2 oriented in the anti-clockwise direction. The value of the integral is

    (a)

    (b)

    (c)

    (d)

Ans.    (d)

Sol.    Let I =

    The function ze3/2 is analytic in the circle |z| = 1 except at z = 0.

    By the Residue theorem,

        

    where, R is the residue of the function at z = 0.

    

    

22.    For each > 0, let be a random variable with exponential density . Then, Var

    (a) is strictly increasing in

    (b) is strictly decreasing in

    (c) does not depend on

    (d) first increases and then decreases in

Ans.    (c)

Sol.

23.    Let {an} be the sequence of consecutive positive solutions of the equation tan x = x and {bn} be the sequence of consecutive positive solutions of the equation tan Then,

    (a)

    (b)

    (c)

    (d)

Ans.    (b)

Sol.    For the equation tan x = x, the first solution lies between , the second between (r/z',r/z + 2r) and so on.

    Thus, we have an

    

    

    

    

    

24.    Let f be an analyticfunction . Assume that |f(z)| 1 for each z . Then, which of the following is not a possible value of (0)?

    (a) 2

    (b) 6

    (c)

    (d)

Ans.    (b)

Sol.    

    Let y = |f(0)|.

    Then, |f(0)| 1 – y2 by Schwarz-Pick theorem

    

    

        =    ey(3 – 2y2 + y4)

    Now, ey(3 – 2y2 + y4) < 6 for y 6 for y [0, 1]

    

25.    The number of non-isomorphic abelian groups of order 24 is

    (a) 2

    (b) 1

    (c) 3

    (d) 4

Ans.    (c)

Sol.    Factoring 24 into primes, we get 24 = 23 . 31

    From the fundamental theorem of Abelian groups, there are three non-isomorphic Abelian groups of order 24.

        (zB) ×    z3

        (z4 × z2) ×    z3

        (z2 × z2 × z2) ×    z3

    So, the answer is thus 3.

26.    Let V be the real vector space of all polynomials in one variable with real coefficients and having degree atmost 20. Define the subspaces

        

    Then, the dimension of W1 W2 is

    (a) 16

    (b) 17

    (c) 15

    (d) 19

Ans.    (c)

Sol.    Let V the real vector space of all polynomials in one variable with real coefficients and having degree atmost 20. Define the subspaces

    

    

        p(3) =    0, p(4) = 0, p(5) = 0, p(7) = 0}

        dim(W1 W2) =    20 – 6 + 1 = 15.

27.    Let f, g : [0, 1] R be defined by

    

    Then,

    (a) Both f and g are Riemann integrable

    (b) f is Riemann integrable and g is Lebesgue integrable

    (c) g is Riemann integrable and f is Lebesgue intergrable

    (d) Neither f nor g is Riemann integrable

Ans.    (b)

Sol.    Let f, g : [0, 1] R be defined by

    

    

    Thus, the given function f is discontinuous at the points

    Further, the above set of points of discontinuous of f has only one limit point viz. 0. Hence, f is Riemann integrable.

    Let P = {a = x0, x1,...,xi – 1, xi,...,xn = b} be any partition of an internal [a, b] (a b).

    Then,    

    in any subinterval [ni – 1, nj], it is clear that

        Mi =    1, mi = 0.    (where, i = 1, 2, ..., n)

    

    

    

    So, f is not integrable on [a, b].

28.    Consider the following linear programming problem

    Maximize x + 3y + 6z – w

    Subject to constriants 5x + y + 6z + 7w 20,

            6x + 2y + 2z + 9w 40

    and        x 0, y 0, z 0, w 0.

    Then, the optimal value is

    (a) 90

    (b) 60

    (c) 70

    (d) 80

Ans.    (b)

Sol.    Given linear programming problem is

        Max z =    x + 3y + 6z – w

    Subject to constraints

        5x + y +    6z + 7w 20

        6x + 2y +    2z + 9w 40

        x 0, y     0, 2 0, w 0

    Standard form of LPP is

        Max Z =    x + 3y + 6z – w

    Subject to constraints

        5x + y + 6z +    7w + S1 = 20

        6x + 2y + 2z +    9w + S2 = 40

        x 0, y 0, z 0, w 0, S1 0, S2 0.

        x = 0, y = 20, z = 0, w = 0

        Max(x + 3y +    6z – w) = 3 × 20 = 60

    

29.    Suppose X is a real valued random variable.

    Which of the following values cannot be attained by E[X] and E[X2], respectively?

    (a) 0 and 1

    (b) 2 and 3

    (c)

    (d) 2 and 5

Ans.    (b)

Sol.

30.    Which of the following subsets of R3 is not compact?

    (a) {(x, y) R2: –1 x 1, y = sin x}

    (b) {(x, y) R2: – 1 y 1, y = x8 – x3 – 1}

    (c) {(x, y) R2: y = 0, sin(e–x) = 0}

    (d)

Ans.    (c)

Sol.    Subset {(x, y) R2 : y = 0, sin 1e–x) = 0} of 1R2 is not compact.

31.    Let M be the real vector space of 2 × 3 matrices with real entries. Let T : M M be defined by

        

    The determinant of T is

    (a) –1

    (b) –2

    (c) –3

    (d) –4

Ans.    (a)

Sol.    Let T : M M be linear transformation defined by

    

    where, M be real vector space of 2 × 3 order.

    

    Then,

    

    

    

    

    

        =    –(–1) [–1] [1[–1[–1]]]]

        =    –1.

32.    Let H be a Hilbert space and {en : n 1} be an orthonormal basis of H. Suppose T : H H is a bounded linear operator. Which of the following cannot be true?

    (a) T(en) e1 for all n 1

    (b) T(en) = en + 1 for all n 1

    (c) T(en) = for all n 1

    (d) T(en) = en – 1 for all n 2 and T(e1) = 0

Ans.    (A)

Sol.    Let H be a Hilbert space and let {en : n ≥ 1} be an orthonormal basis of H. Suppose T : H H is a bounded linear operator. Then,

        T(en)     e1 for all n 1.

33.    The value of is

    (a) 0

    (b) some c (0, 1)

    (c) 1

    (d)

Ans.    (a)

Sol.

34.    Let f : C {3i} C be defined by f(z) = .

    Which of the following statements about f is false?

    (a) f is conformal on C{3i}

    (b) f maps circles in C{3i} onto circles in C

    (c) All the fixed points of f are in the region {z C : lm(z) > 0}

    (d) There is no straight line in C{3i} which is mapped onto a straight line in C by f

Ans.    (c)

Sol.    Let f : C|{3i} C be fined by

        f(z) =    

    Let z be the fixed point.

    Then,     f(z) = z

    

35.    The matrix A = can be decomposed uniquely into the product A = LU, where

    

    The solution of the system LX = [1 2 2]t is

    (a) [111]t

    (b) [110]t

    (c) [011]t

    (d) [101]t

Ans.    (a)

Sol.    We have,

        

    

    Now,    A = LU implies that

    

    implies     u11 =    1, u12 = 2, u13 = 0

        l21u11 =    1

    

        l21u12 + u22 =    3

        u22 =    3 – l21u12 = 3 – 1 × 2 = 1

        l21u13 + u23 =    1

        u23 =    1 – l21u13 = 1 – 1 × 0 = 1

        l31u11 =    0

        l31 =    0

        l31u12 + l32u22 =    1

        l32 =    

        l31u13 +    l32u23 + u33 = 3

        u33 =    3 – l31u13l32u23

        =    3 – 0 × 0 – 1 × 1 = 2

    

    

    

    Therefore, the solution is [1 1 1]t.

36.    Let S = Then, the supremum of S is

    (a) 1

    (b)

    (c) 0

    (d)

Ans.    (a)

Sol.    The supremum of S =

37.    The image of the region

        {z     C : Re(z) > Im(z) > 0}

    under the mapping is

    (a) {w C : Re(w) > 0, Im (w) > 0}

    (b) {w C : Re(w) > 0, Im(w) > 0, |w| > 1}

    (c) {w C : |w| > 1}

    (d) {w C : Im(w) > 0, |w| > 1}

Ans.    (c)

Sol.    The given region is D = {Z C : Re(z) > Im(z) > 0}

    and the mapping is

        f(z) =    ez2

    Let z = 9 + 10i, then z D

    Now,     w =    f(z) = f(9 + 10i)

        =    e(09 + 10i)2

        =    e–19 + 180i

        =    e–19.e180i

        =    e–19 (cos 180 + sin 180i)

        =    –e–19

        Im W =    0

38.    Which of the following groups contains a unique normal subgroup of order four?

    (a) Z2 Z4

    (b) The dihedral group, D4 of order eight

    (c) The quaternion group, Q8

    (d) Z2 Z2 Z2

Ans.    (c)

Sol.    (a, b, c) { 1, i}, { 1, j}, { 1, k} are normal subgroup of Q8 of order 4.

39.    Let B be a real symmetric positive definite n × n matrix. Consider the inner product on Rn defined by (X, Y) = Yt BX. Let A be an n × n real matrix and let T : Rn Rn be the linear operator defined by T(X) = AX for all X Rn. If S is the adjoint of T, then S(X) = CX for all X Rn, where C is the matrix

    (a) B–1 At B

    (b) B At B–1

    (c) B–1 AB

    (d) At

Ans.    (a)

Sol.    Let B be a real symmetric positive definite n × n matrix. Consider the inner product on IRn defined by <X, Y> = yt BX. Let A be an n × n real matrix and T : IRn IRn be the linear operator defined by T(X) = AX for all X IRn. If S is the adjacent of T. Then, S(X) = CX for all X 1Rn, where C = B–1AtB.

40.    Let X be an arbitrary random variable that takes values in {0, 1, ..., 10}. The minimum and maximum possible values of the variance of X are

    (a) 0 and 30

    (b) 1 and 20

    (c) 0 and 25

    (d) 1 and 25

Ans.    (b)

Sol.

41.    Let M be the space of all 4 × 3 matrices with entries in the finite field of three elements. Then, the number of matrices of rank three in M is

    (a) (34 – 3)(34 – 32)(34 – 33)

    (b) (34 – 1)(34 – 2)(34 – 3)

    (c) (34 – 1)(34 – 3)(34 – 32)

    (d) 34(34 – 1)(34 – 2)

Ans.    (a)

Sol.    Consider the linear transformation

    T : I R3 I R3 defined by

        T(x, y, z) =    (y, z, 0)

    Then,    T(y, z, 0) =    (z, 0, 0)

    and    T(z, 0, 0) =    (0, 0, 0)

    Hence,    T3(x, y, z) =    0

    but     T2(x, y, z)     (0, 0, 0)

    Now,    T(1, 0, 0) =    (0, 0, 0)

        T(0, 1, 0) =    (1, 0, 0)

        T(0, 0, 1) =    (0, 1, 0)

    So, the matrix associated to T is

        [T] =    

      tr(T) = 0, also n m and T is not diagonalisable.

42.    Let V be a vectror space of dimension m 2. Let T : V V be a linear transformation such that Tn + 1 = 0 and Tn 0 for some n 1. Then, which of the following is necessarily true?

    (a) Rank (Tn) Nullity (Tn)

    (b) tr (T) 0

    (c) T is diagonalisable

    (d) n = m

Ans.

Sol.    

    If S has n elements, then n can be 4.

43.    Let X be a convex region in the plane bounded by straight lines. Let X have 7 vertices. Suppose f(x, y) = ax + by + c has maximum value M and minimum value N on X and N < M. Let S = {P : P is a vertex of X and N < f(P) < M)}. If S has n elements, then which of the following statements is true?

    (a) n cannot be 5

    (b) n can be 2

    (c) n cannot be 3

    (d) n can be 4

Ans.    (d)

Sol.    Let X be a convex region in the plane bounded by straight lines. Let X have 7 vertices. Suppose f(x, y) = ax + by + c has maximum value M and minimum value N on X and N < M. Let S = {P : P is a vertex of X and M < f(P) < M}

44.    Which of the following statements are true?

    P.    If f L1 (R), then f is continuous.

    Q.    If f L1 (R) and f(x) exists, then the limit is zero.

    R.    If f L1( R), then f is bounded.

    S.    If f L1 (R) is uniformly continuous, then f(x) exists and equals to zero.

    (a) Q and S

    (b) P and R

    (c) P and Q

    (d) R and S

Ans.    (a)

Sol.

45.    Let u be a real valued harmonic function on C.

    Let g : R2 R be defined by

        g(x, y) =    

    Which of the following statements is true?

    (a) g is a harmonic polynomial

    (b) g is a polynomial but not harmonic

    (c) g is harmonic but not a polynomial

    (d) g is neither harmonic nor a polynomial

Ans.    (a)

Sol.

46.    Let S = {z C : |z| = 1} with the induced topology from C and let f : [0, 2] S be defined asf(t) = Then, which of the following is true?

    (a) K is closed in [0, 2] f(K) is closed in S

    (b) U is open in [0, 2] f(U) is open in S

    (c) f(X) is closed in S X is closed in [0, 2]

    (d) f(Y) is open in S Y is open in [0, 2]

Ans.    (a)

Sol.    Let S = {Z C : |Z| = 1}

    With the induced topology from and let f:[0, 2] S be defined by

        f(t) =    

    Then, k is closed in [0, 2].

    Hence, f(k) is closed in S.

47.    Assume that all the zeroes of the polynomial anxn + an – 1xn – 1 + ... + a1x + a0 have negative real parts. If u(t) is any solution to the ordinary differential equation

            

    then is equal to

    (a) 0

    (b) 1

    (c) n – 1

    (d)

Ans.    (a)

Sol.    Consider the polynomial x2 + 2x + 5 = 0

    having zeroes x = –1 + 2i whose real part is negative.

    Now, corresponding differential equation is

         =    0

    The auxiliary equation is

    

    

48.    Which of the following is false?

    (a) f is a continuous linear functional

    (b)

    (c) There does not exist any y x c00 such that f(x) = (x, y) for all x c00

    (d) N1 N{0}

Ans.    (d)

Sol.

49.    Which of the following is false?

    (a) c00 N

    (b) N is closed

    (c) c00 is not a complete inner product space

    (d) c00 = N N1

Ans.    (d)

Sol.

50.    Which of the following is not an unbiased estimate of µ?

    (a) X1

    (b)

    (c) n [min{X1, X2, ..., Xn}]

    (d)

Ans.    (d)

Sol.

51.    Consider the problem of estimating µ. the MSE (Mean Square Error) of the estimate

    

    (a) µ2

    (b)

    (c)

    (d)

Ans.    (a)

Sol.

52.    The value of no is

    (a) 4

    (b) 6

    (c) 2

    (d) 8

Ans.    (a)

Sol.

53.    Let 0q1, ..., qn0 + 1 be n0 + 1 distinct points and Y = X\{q1, ..., qn0 + 1}. Let m be the number of connected components of Y. The maximum possible value of m is

    (a) 8

    (b) 7

    (c) 5

    (d) 6

Ans.    (a)

Sol.

54.    The product W(y1, y2) P(x) equals to

    (a)

    (b)

    (c)

    (d)

Ans.    (a)

Sol.    Let W(y1, y2) be the wronskian of two linearly independent solutions y1 and y2 of the equation

    

    

    On putting the value of Q(x) from Eq. (i) into Eq. (ii), we get

    

    

    

55.    If y1 = e2x and y2 = xe2x, then the value of P(0) is

    (a) 4

    (b) –4

    (c) 2

    (d) –2

Ans.    (b)

Sol.    Here, y1 = e2x, y2 = xe2x